skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jia, Yizhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liquid transport is an essential functionality in microfluidic operation. This review summarizes emerging strategies for liquid management in bioelectronics, with a focus on system-level integration and applications. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026
  2. Biosensors are widely applied in biomarker detection. Their widespread use necessitates regeneration methods to ensure cost-effectiveness and sustainability. This mini-review systematically summarizes recently reported regeneration techniques. 
    more » « less
  3. Recent advancements in virtual reality (VR) and augmented reality (AR) have strengthened the bridge between virtual and real worlds via human-machine interfaces. Despite extensive research into biophysical signals, gustation, a fundamental component of the five senses, has experienced limited progress. This work reports a bio-integrated gustatory interface, “e-Taste,” to address the underrepresented chemical dimension in current VR/AR technologies. This system facilitates remote perception and replication of taste sensations through the coupling of physically separated sensors and actuators with wireless communication modules. By using chemicals representing five basic tastes, systematic codesign of key functional components yields reliable performance including tunability, versatility, safety, and mechanical robustness. Field testing involving human subjects focusing on user perception confirms its proficiency in digitally simulating a range of taste intensities and combinations. Overall, this investigation pioneers a chemical dimension in AR/VR technology, paving the way for users to transcend visual and auditory virtual engagements by integrating the taste sensation into virtual environment for enhanced digital experiences. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  4. Abstract Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real‐time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience. 
    more » « less